Glossary

$\underline{A}|\underline{B}| \underline{C}|\underline{D}| \underline{E}|\underline{E}| \underline{G}|\underline{H}| \underline{I}|\underline{J}| \underline{K}|\underline{\underline{L}}| \underline{M}|\underline{N}| \underline{O}|\underline{P}| \underline{Q}|\underline{R}| \underline{S}|\underline{I}| \underline{U}|\underline{V}| \underline{\mathrm{W}}|\underline{X}| \underline{Y}|\underline{Z}|$

 References / Links
All Terms

Part of text and figures are adapted from Faccioli E. e R. Paolucci: "Elementi di Sismologia applicata all'Ingegneria", Pitagora, 2005.

A

Accelerometer

Instrument to measure seismic acceleration. It can be of two types:
analog instrument: ground acceleration is reproduced by a mechanical instrument on a physical support, typically paper or photographic film, and it is digitized at a later stage.
digital instrument: it is typically based on either electro-magnetic or force-balance transducers. The electric signal is then properly conditioned, sampled and digitized. The digital instruments are operating from about the mid-80s.

The most representative parameters defining the characteristics of the recording instrument response are as follows:

- sensor undamped natural vibration frequency (frequency);
- sensor damping coefficient with respect to critical (damping);
- frequency band for which the sensor gives a flat response (frequency band);
- generator constant of the sensor (gain);
- smallest signal that can be resolved by the sensor (sensitivity);
- maximum signal that can be resolved by the sensor (full scale);
- number of bits of the recorder (number of bits).

Active Fault

A fault segment that has moved within a time lapse that can be associated with recent to present-day activity normally in the last 10.000-100.000 years. Such manifestations may include for instance mild warping of the ground-surface associated with the effects of an active fault or geodetic data indicating crustal movement across a particular region otherwise known for seismic activity.

Adimensional Spectra

Response Spectra whose ordinates are divided by their PGA (see $\underline{P G A}$).

$\mathrm{a}_{\mathrm{g}}[\mathrm{g}]$

Peak ground acceleration (see $\underline{P G A}$) value to which the target spectrum (see Target Spectrum) is anchored

Arias Intensity

A ground-motion parameter derived from an accelerogram and proportional to the integral of the acceleration squared over the entire signal duration. ${ }^{[1]}$ Introducing the function of motion intensity:

$$
I(t)=\frac{\pi}{2 g} \int_{0}^{t} a^{2}(\tau) d \tau
$$

where $\mathrm{a}(\mathrm{t})$ is the acceleration at time t and g the gravity acceleration, the Arias Intancitı ic tho movimum volu on of thic funntinn io.

